BRCA1 and RAD51C Promoter Hypermethylation Confer Sensitivity to the PARP Inhibitor Rucaparib in Patients with Relapsed, Platinum Sensitive Ovarian Carcinoma in ARIEL2 Part 1

Elizabeth Swisher, MD, University of Washington
VERBAL DISCLOSURE

• No financial relationships to disclose
Disclosure

- Rucaparib approved by the Food and Drug Administration (FDA) for recurrent *BRCA*-mutated OC following 2 previous lines of chemotherapy
- Off-label uses from the ARIEL2 trial are discussed
ARIEL2 (Part 1) designed to assess rucaparib sensitivity in 3 prospectively defined subgroups

Key eligibility
(N=206 pts; 204 treated)
- HGOC (serous or endometrioid)
 - Known germline $BRCA$ enrollment capped at N=15
- ≥ 1 prior platinum chemotherapy
- Platinum-sensitive, relapsed, measurable disease
- Tumor tissue (screening biopsy and archival)

Tumor tissue
- $BRCA^{mut}$
- $BRCA^{wt}$/LOH$_{high}$ (BRCA like)
- $BRCA^{wt}$/LOH$_{low}$ (Biomarker negative)

Analysis of HRD subgroups
- Primary endpoint
 - PFS
- Secondary endpoints
 - ORR
 - RECIST
 - RECIST and/or CA-125
- Safety
- PK

Monotherapy, measurable disease, and pre-treatment and archival biopsies
BRCA1 methylation results in attenuated gene expression but no difference of overall survival in TCGA HGSOC

BRCA1 methylation is associated with down-regulation of BRCA1 gene expression. BRCA1 methylated cases exhibit similar overall survival to BRCA wild-type cases in TCGA HGSOC.

ARIEL2 Part 1: Improved PFS in BRCA-mutated and BRCAwt/LOHhigh vs BRCAwt/LOHlow patients

Data cutoff date: January 18, 2016.
Adapted from Coleman RL et al. ASCO 2016. Abstract 5540.
ARIEL2 Part 1: Improved PFS in BRCA-mutated and $BRCA^{wt}/LOH^{high}$ vs $BRCA^{wt}/LOH^{low}$ patients

Data cutoff date: January 18, 2016.
Adapted from Coleman RL et al. ASCO 2016. Abstract 5540.
OC with Damaging Mutations in Some HR Genes Responded to Rucaparib

<table>
<thead>
<tr>
<th>HR Gene</th>
<th>Genetic Alteration Type</th>
<th>Germline/Somatic</th>
<th>Genomic LOH Level</th>
<th>RECIST Response</th>
<th>PFS (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD51C</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>9.6</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Exon deletions</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>23.7*</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>8.2</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>8.3</td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>Not evaluable</td>
<td></td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>11.0</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>2.4*</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Splice</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>5.4</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>CR</td>
<td>10.3</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Indeterminate</td>
<td>SD</td>
<td>5.3</td>
</tr>
</tbody>
</table>

* Censored PFS duration
OC with Damaging Mutations in Some HR Genes Responded to Rucaparib

<table>
<thead>
<tr>
<th>HR Gene</th>
<th>Genetic Alteration Type</th>
<th>Germline/Somatic</th>
<th>Genomic LOH Level</th>
<th>RECIST Response</th>
<th>PFS (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD51C</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>9.6</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Exon deletions</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>23.7*</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>8.2</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>8.3</td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>Not evaluable</td>
<td></td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>11.0</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>2.4*</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Splice</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>5.4</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>CR</td>
<td>10.3</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Indeterminate</td>
<td>SD</td>
<td>5.3</td>
</tr>
</tbody>
</table>

* Censored PFS duration
OC with Damaging Mutations in Some HR Genes Responded to Rucaparib

<table>
<thead>
<tr>
<th>HR Gene</th>
<th>Genetic Alteration Type</th>
<th>Germline/Somatic</th>
<th>Genomic LOH Level</th>
<th>RECIST Response</th>
<th>PFS (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAD51C</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>9.6</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Exon deletions</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>23.7*</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>PR</td>
<td>8.2</td>
</tr>
<tr>
<td>RAD51C</td>
<td>Splice</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>8.3</td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>Not evaluable</td>
<td></td>
</tr>
<tr>
<td>RAD51D</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>11.0</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>2.4*</td>
</tr>
<tr>
<td>BRIP1</td>
<td>Splice</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>5.4</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>CR</td>
<td>10.3</td>
</tr>
<tr>
<td>NBN</td>
<td>Truncation</td>
<td>Germline</td>
<td>Indeterminate</td>
<td>SD</td>
<td>5.3</td>
</tr>
</tbody>
</table>

* Censored PFS duration
Damaging Mutations in Other HR Genes Was not Associated with Response to Rucaparib

<table>
<thead>
<tr>
<th>HR Gene</th>
<th>Genetic Alteration Type</th>
<th>Germline/Somatic</th>
<th>Genomic LOH Level</th>
<th>RECIST Response</th>
<th>PFS (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Truncation</td>
<td>Somatic</td>
<td>High</td>
<td>Not evaluable</td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td>Homozygous deletion</td>
<td>Somatic</td>
<td>Indeterminate</td>
<td>SD</td>
<td>5.2</td>
</tr>
<tr>
<td>CHEK2</td>
<td>Splice</td>
<td>Somatic</td>
<td>Low</td>
<td>SD</td>
<td>7.1</td>
</tr>
<tr>
<td>CHEK2</td>
<td>Truncation</td>
<td>Germline</td>
<td>High</td>
<td>SD</td>
<td>5.5</td>
</tr>
<tr>
<td>FANCA</td>
<td>Homozygous deletion</td>
<td>Somatic</td>
<td>High</td>
<td>SD</td>
<td>5.3*</td>
</tr>
<tr>
<td>FANCI</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>PD</td>
<td>1.6</td>
</tr>
<tr>
<td>FANCM</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>SD</td>
<td>3.5</td>
</tr>
<tr>
<td>FANCM</td>
<td>Truncation</td>
<td>Germline</td>
<td>Low</td>
<td>PD</td>
<td>0.7</td>
</tr>
</tbody>
</table>

* Censored PFS duration
BRCA1 and **RAD51C** methylation and mutation are mutually exclusive

- **BRCA1** methylated tumors found in 12.7% (21/165) of patients
- **RAD51C** methylated tumors found in 2.4% (4/165) of patients

<table>
<thead>
<tr>
<th></th>
<th>Mutated</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meth</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Unmeth</td>
<td>27</td>
<td>113</td>
</tr>
</tbody>
</table>

\(P = 0.015 \)

Data cutoff date: January 18, 2016.
Swisher et al. Unpublished data.
Correlation of \textit{BRCA1/RAD51C} methylation with LOH

80\% of \textit{BRCA1} and all \textit{RAD51C} methylated cases have high LOH

\begin{tabular}{|c|c|}
\hline
\textit{BRCA1} methylated & \textit{BRCA1} unmethylated \\
\hline
\textbf{LOH}^{\text{high}} & 16 & 58 \\
\textbf{LOH}^{\text{low}} & 4 & 59 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
\textit{RAD51C} methylated & \textit{RAD51C} unmethylated \\
\hline
\textbf{LOH}^{\text{high}} & 4 & 70 \\
\textbf{LOH}^{\text{low}} & 0 & 63 \\
\hline
\end{tabular}

\(P=0.015\) \(P=0.12\)

Data cutoff date: January 18, 2016.
Swisher et al. Unpublished data.
BRCA1 and RAD51C methylation in archival and pretreatment biopsies from ARIEL2

- **BRCA1 and RAD51C methylation** were assessed in 90 and 99 pairs of archival and pretreatment biopsies.
- Of 77 cases without **BRCA1** methylation in archival, only 1 (1.3%) methylated in pre-treatment biopsy.
- Of 13 cases with **BRCA1** methylation in archival, 4 (31%) were unmethylated in pre-treatment biopsy.
- **RAD51C** methylated cases were always concordant between archival and pre-treatment biopsy, but we only had paired samples on 2 **RAD51C** methylated cancers.
Rucaparib is active in BRCA1 and RAD51C methylated OC

- Confirmed investigator-assessed RECIST responses:
 - 52.4% (11/21) of BRCA1 methylated cases
 - 75.0% (3/4) of RAD51C methylated cases
 - 29% of BRCA-wild type/LOH high

- Duration of response:
 - Median of 6.1 months (95% CI, 4.8–8.9) for BRCA1 methylated cases
 - Median of 9.5 months (95% CI, 5.2–9.8) for RAD51C methylated cases

- Progression-free survival:
 - Median of 7.4 months (95% CI, 5.3–9.7) for BRCA1 methylated cases
 - Median of 11.1 months (95% CI, 3.2–14.1) for RAD51C methylated cases

Data cutoff date: January 18, 2016.
Swisher et al. Unpublished data.
Two *CDK12* mutant cases had long durable responses

- CDK12 involved in regulation of RNA splicing
- Loss leads to down-regulation of many DNA repair genes and could result in HRD
- One of “frequently” mutated genes in HGSOC (3%, TCGA)

<table>
<thead>
<tr>
<th>CDK12 Mutation</th>
<th>LOH Status</th>
<th>Best Overall Response</th>
<th>Target Lesion % Change</th>
<th>PFS (Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic CDK12 (Y279fs*1)</td>
<td>High</td>
<td>Stable Disease</td>
<td>-25.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Somatic CDK12 (F89fs*3)</td>
<td>High</td>
<td>Partial Response</td>
<td>-41.9</td>
<td>16.7</td>
</tr>
<tr>
<td>Somatic CDK12 (homozygous deletion)</td>
<td>High</td>
<td>Partial Response</td>
<td>-73.7</td>
<td>29.3</td>
</tr>
</tbody>
</table>
TCGA estimate of HRD in HGSOC

No HRD*, 50%

Germline BRCA1, 8%

Somatic BRCA1, 3%

Germline BRCA2, 6%

Somatic BRCA2, 2%

BRCA1 methylation, 11%

EMSY amplification, 6%

PTEN loss, 5%

Fanconi Anemia genes, 7%

*Includes mismatch repair gene defects and Cyclin E1 amplifications.
What molecular alterations confer HRD in HGSOC?

- Germline BRCA1, 11%
- Somatic BRCA1, 4%
- Germline BRCA2, 5%
- Somatic BRCA2, 2%
- BRCA1 methylation, 10%
- CDK12 mutation, 2%
- RAD51C methylation, 2%
- Mutation in non-BRCA core HR genes, 10%
- No HRD, 56%
BRCA_{wt} patients with LOH-high tumors have significantly longer PFS than those with LOH-low tumors

- The genomic LOH cutoff prespecified for testing in ARIEL2 Part 1 was 14%
- Optimal separation of PFS curves was found at the refined cutoff of 16%
Conclusions

• *BRCA1* and *RAD51C* methylation in ovarian carcinomas is associated with high LOH and sensitivity to rucaparib

• Loss of *BRCA1* methylation is common after exposure to platinum chemotherapy, even in “platinum sensitive” patients

• If methylation was to be used as a predictor of PARP inhibitor sensitivity, it would need to be assessed in a pre-treatment (not archival) specimen

• *CDK12* mutations may confer PARP inhibitor sensitivity as well as mutations in other core HR genes

• Routine sequencing of high-grade OC would identify at least 10-15% of cases with somatic mutations and 20% with germline mutations likely to respond to PARP inhibition

• Refined LOH cutoff for HRD from ARIEL2 is being tested in ARIEL3
Acknowledgments

ARIEL2 patients, their families, and caregivers

Iain McNeish, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK

Additional ARIEL2 Investigators and Sites: Martin Buck (Sir Charles Gairdner Hospital), Michael Friedlander (Prince of Wales Hospital), Jeffrey Goh (Royal Brisbane and Women’s Hospital), Paul Harnett (Westmead Hospital), Ganessan Kichenadasse (Flinders Medical Centre), Prafull Ghatage (Tom Baker Cancer Centre), Stephen Welch (London Regional Cancer Centre), Diane Provencher (Centre Hospitalier de L'Université de Montreal), Johanne Weberpals (Ottawa Health Research Institute), Katia Tonkin (Cross Cancer Institute), Alain Lortholary (Centre Catherine de Sienne), Anne Floquet (Institut Bergonie), Isabelle Ray-Coquard (Centre Léon Bérard), Laurence Gladieff (Institut Claudius Regaud), Benoit You (Centre Hospitalier Lyon Sud), Frederic Selle (Hôpital Tenon), Jacques Medioni (Hôpital Européen Georges-Pompidou), Andres Cervantes (Hospital Clinico Universitario de Valencia), Andres Poveda (Instituto Valenciano de Oncologia), Susana Banerjee (Royal Marsden), Sarah Blagden (Imperial College), Yvette Drew (Northern Centre for Cancer Care), Alison Young (Saint James Hospital), Andrew Clamp (Christie Hospital), Deborah Armstrong (Sidney Kimmel), Cesar Castro (MGH), Janiel Cragun (University of Arizona), Mark Morgan (University of Pennsylvania), Paul Haluska (Mayo Clinic), Lainie Martin (Fox Chase Cancer Center), Panagiotis Konstantinopoulos (Dana-Farber Cancer Institute), Ling Ma (Rocky Mountain Cancer Centers), Kathleen Moore (University of Oklahoma), David Mutch (Washington University), Bhavana Pothuri (New York University), Lee-May Chen (UCSF), Nelson Teng (Stanford University), Wael Harb (Horizon Oncology Center), Brian DiCarlo (Coastal Integrative Cancer Care), Robert Dichmann (Central Coast Medical Oncology Group), David Park (Saint Jude Heritage Medical Center), James Sanchez (Comprehensive Cancer Centers of Nevada), Gerardo Colon-Otero (Mayo Clinic Jacksonville)

Foundation Medicine: Murtaza Mehdi, Scott Yerganian, James Sun, Matthew Hawryluk, Christine Vietz, Christine Burns, Vince Miller

Clovis Oncology: Erin Dominy, Monica Roy, Sanjay Shetty, Jeff Isaacscon, Lindsey Rolfe, Mike Bartosiewicz, Kathy Crankshaw, Amanda Cha, Jennifer Borrow, Tom Harding, Liliane Robillard, Simon Watkins, Elaina Mann
Acknowledgments

Mary-Claire King, PhD
Barbara Norquist, MD
Maria Harrell, PhD
Tom Walsh, PhD
Ming K Lee, PhD
Silvia Casadei, PhD
Anne Thornton
Katy Pennington, MD
Chris Pennil, MS
Kathy Agnew, MS
Sarah Bernards
Jessica Mandell, CGC
Steve Salipante, MD, PhD
Colin Pritchard MD, PhD

Clinical Collaborators
Barbara Goff, MD
Rochelle Garcia, MD
Heidi Gray, MD
Benjamin Greer, MD
John Liao, MD, PhD
Mara Rendi, MD
Hisham Tamimi, MD
Renata Urban, MD
Kemi Doll, MD

SU2C Team
Dana-Farber Cancer Institute
Alan D’Andrea, MD, PhD
Geoff Shapiro, MD, PhD
Ursula Matulonis, MD
Panos Konstantinopoulos, MD

Mayo Clinic
Scott Kaufmann, MD, PhD
John Weroha, MD, PhD

MD Anderson Cancer Center
Karen Lu, MD

Memorial Sloan Kettering
Maria Jasin, PhD

U Chicago
Gini Fleming, MD

Clinical Collaborators
Barbara Goff, MD
Rochelle Garcia, MD
Heidi Gray, MD
Benjamin Greer, MD
John Liao, MD, PhD
Mara Rendi, MD
Hisham Tamimi, MD
Renata Urban, MD
Kemi Doll, MD

WEHI
Clare Scott, MD, PhD

SU2C Team
Dana-Farber Cancer Institute
Alan D’Andrea, MD, PhD
Geoff Shapiro, MD, PhD
Ursula Matulonis, MD
Panos Konstantinopoulos, MD

Mayo Clinic
Scott Kaufmann, MD, PhD
John Weroha, MD, PhD

MD Anderson Cancer Center
Karen Lu, MD

Memorial Sloan Kettering
Maria Jasin, PhD

U Chicago
Gini Fleming, MD

Funding
Department of Defense, OCRP
Ovarian Cancer Research Fund Alliance
NIH/NCI
Wendy Feuer Ovarian Cancer Research Fund
V Foundation
SU2C/AACR/OCRFA/NOCC